Disciplines
Architecture, Engineering, Planning, Energy, Interior Design, Signage

Portfolio
Higher Education, Government, Corporate, Energy

Expertise
• Academic Planning & Design
• Corporate Headquarters
• Energy Consulting & Implementation
• Libraries & Learning Commons
• Modernization
• Science & Technology
• Sustainable Design
• Workplace Design
• Classified Facilities
• Embassies & Consulates
• Historic Preservation
• Master Planning
• Monuments & Landmarks
• Student Life
• Undergraduate Science

Size
300 architects and engineers. 140 LEED® APs.

Research
We collaborate with strategic partners in business and education to conduct critical research that advances smart, sustainable design.

Sustainability
Our commitment to sustainability, energy efficiency, and renewable energy informs every project design, as well as our corporate culture and business strategies.

Recognition
• 2012 Architect 50 – Architect Magazine
• Top 100 Green Design Firms of 2012 – Engineering News-Record
• Top 250 Architecture Firms of 2012 – Architectural Record
• 2012 Giants 300 – Building Design + Construction
• Top 500 Design Firms of 2012 - Engineering News-Record
• AIA National 2012-2015 IDP Outstanding Firm Award
• 2011 Best AEC Firm to Work For - Building Design + Construction
services & delivery types

Architecture
• Design
• Planning
• Programming
• Interior Design
• Life Safety
• Signage & Wayfinding
• Workplace Design

Engineering
• Electrical
• Fire Protection
• Mechanical
• Plumbing
• Security
• Structural
• Telecommunications

Energy consulting & implementation
• Audits & Feasibility Studies
• Commissioning/retro-commissioning
• Energy master planning
• GHG Inventory & Climate Action Planning
• Renewable Energy Sources

Delivery types
• Integrated Project Delivery with
• Building Information Modeling (BIM)
• Design/Build & Design/Bid/Build
• GSA Schedule
• Term Contracts
• Performance Contracting
EYP has designed sustainable projects for clients in 98 countries
We believe that knowledge is as critical to design excellence as creativity. Expertise – the deep knowledge that comes from research, study, and experience – enables us to harness creativity in ways that deliver exceptional value to our clients. Creativity in turn drives us to explore, question, and continuously advance our understanding of how the built environment influences human behavior and culture – and how buildings and their systems impact the natural environment. The union of expertise and creativity creates a powerful dynamic that enriches human experience.

/ expertise driven design™
EYP is the nationally recognized leader in the planning and design of undergraduate science learning environments. Our Laboratory Planning & Design Group integrates expertise across design, planning, and engineering to create built environments that foster interdisciplinary thinking and showcase the excitement of science. Each of our design solutions is founded on a unique collaborative discovery process with our clients. The resulting designs emphasize the individual in intellectual community, balancing a building’s technical needs with the social, intellectual, and physical needs of occupants.

Transparency that puts science on display and strategic adjacencies of laboratories, classrooms, and social spaces are hallmarks of EYP design. In our experience, visible science sparks excitement and enlivens interdisciplinary dialogue. Our designs advance institutional goals by promoting hands-on learning, supporting collaboration, and communicating the importance of the sciences within the liberal arts.

While every project presents a distinctive opportunity to achieve an environment unique to each academic community’s mission, vision, and goals, our designs embrace certain fundamentals:

- Enhanced visibility puts science on display, raising the profile of the sciences and increasing their appeal among non-majors
- Safe and visible environments for discussion and write-ups near laboratories support a seamless learning process
- Shared instrumentation among teaching and research laboratories creates opportunities for effective interactions among users, as well as economies of scope
- Flexible informal spaces merge intellectual and social interaction, sparking creativity and fostering community
- Strategic collocations of student and faculty spaces encourage mentoring and informal learning
- Energy- and cost-saving sustainable design elements advance institutional goals
Facility Types

- Astronomy
- Chemical sciences
- Computer science
- Engineering
- Medical education
- Physical sciences
- Psychology
- Biological sciences
- Clean rooms
- Containment facilities
- Environmental science
- Nanotechnology
- Physics
- Vivaria

EYP and Project Kaleidoscope

EYP has actively participated in Project Kaleidoscope (PKAL) since 1990. Through presentations and publications, EYP experts and designers are helping to advance PKAL's mission of building and sustaining strong undergraduate programs in the fields of science, technology, engineering, and mathematics (STEM). We are committed to sharing our expertise through the design of forward-thinking science facilities to ensure the best possible educational opportunities for our nation's students.

Select Publications/Presentations

- “No Such Thing as ‘Good Vibrations’ in Science,”
 Facilities Manager July/August 2011

- “Simple Solutions for Fume Hoods Yield Huge Energy Savings,”
 Tradeline Journal 2011

- “The Role of Vivaria in Undergraduate Science Education,”
 Animal Lab News May/June 2011

- “Cogeneration: How to Assess Where it Works (Or Not),” NYAPPA 2011 Conference

- “Financial models for turning antiquated science buildings into platforms for economic growth,” Tradeline 2010 Conference

• “Open Science, Smart Energy: Innovative Re-Use Strategies for Aging Facilities While Lowering Carbon Footprint,” Labs 21 2010 Conference

• “Strategies for Future-Proofing Your New Buildings,” ERAPPA 2010 Conference

• “Efficiency + Flexibility + Economy = Effective Facility Design: Recipes for Going Green,” TriBranch Symposium 2010

• “Renovating Spaces to Accommodate Research-based Pedagogies, Emerging Interdisciplinary Programs, and Institutional Goals for Sustainability,” Project Kaleidoscope Webinar, 2009

• “Subduing Vibrations in Laboratory Buildings,” Structures November 2007

• “Designing vertical science labs,” Lab Design 2007 Conference

"Your work with the faculty has combined a sensitivity to our program needs with a creative approach that gives us the kind of teaching, research, and public spaces that we have been hoping for."

Professor, Hamilton College
Goals: Hamilton College wanted to unite physics, biology, chemistry, geology, psychology, and archaeology to encourage synergies among disciplines and to showcase its commitment to scientific teaching and research as well as the environment.

Strategies: We designed an expansive facility where communities of faculty offices and student/faculty research spaces maintain the intimacy of the Hamilton experience. Opportunities for interdisciplinary and intergenerational connections abound. The sciences enjoy the efficiencies and serendipities of shared space and the building’s innovative living rooms have made it the new heart of the campus.

Achievements: This facility demonstrates the elegance and efficiency of sustainable design. High-performance glazing and sunshades bring daylight deep into the space, creating a bright and airy space, while an array of energy conservation measures are saving the client approximately $284,000 in annual energy costs. Newly enrolled students cite the Unified Science Center as a major influence on their decision-making process.

/ 2007 Award of Merit, AIA New York State Design Awards
/ 2007 BSA/SCUP Higher Education, Facilities Design Award, Honor Award

Project Details:
/ 165,000 square feet new construction
/ 35,000 square feet renovation
Cabrini College Radnor, PA
Antoinette Iadarola Center for Science, Education & Technology
Goals: To support its strategic goals, Cabrini College needed to maximize resources to create a sophisticated science teaching and research space that could accommodate current and future programs in the sciences, elementary science education, and Information Technology.

Strategies: To respect the scale and context of its legacy site, the building was designed as two slipped bars, centered on a dramatic three-story glass atrium, with glass lounges at either end. To create swing space for anticipated program and enrollment growth, the third floor included affiliated research space that could be leased to a biotech start-up company until additional teaching laboratories and support spaces were needed. Sustainable features include extensive daylighting, a green roof over the lecture hall, and roof-mounted photovoltaic panels.

Achievements: The Center’s orientation and broad array of teaching spaces has reactivated this formerly underutilized area of the campus, enhancing the College’s distinctive sense of place.

Project Details:
60,000 gross square feet
“This open and attractive building positively invites passers-by to glance inside, step inside, sit inside – in short, to become a part of all that is going on here.”

Vice President for Academic Affairs, Dean, College of the Holy Cross
Goals: The College of the Holy Cross sought to foster collaborative, interdisciplinary science teaching, learning, and research within a facility that would open the excitement of scientific experimentation and discovery to the community. The facility needed to provide opportunities for effective intellectual collisions among the sciences and across the liberal arts.

Strategies: The Integrated Science Complex connects the renovated Haberlin, Beaven, O’Neil, and Swords Halls to the new Smith Labs, creating an exciting multidisciplinary science community whose open spaces attract students from all over campus. New and renovated atria give the complex an open and inviting feeling and form a connective spine, visually uniting three levels of entryways. A variety of gathering places on every level provide opportunities for group study and conversation. The complex includes teaching and research space for Chemistry, Biochemistry and Physics.

Achievements: With its transparent walls and strategic adjacencies of classrooms, public spaces, and laboratories, this campus focal point puts science on display. By renovating and adding to existing structures, the College gained a state-of-the-art science complex at far lesser cost and disruption than new construction.

/ LEED Gold Certification

Project Details:
/ 89,200 gross square feet renovation
/ 46,846 gross square feet new construction
Swarthmore College Swarthmore, PA
Unified Science Center
Expertise driven design

Goals: Swarthmore was committed to advancing interdisciplinary teaching and research across the sciences while expressing its dedication to the environment.

Strategies: EYP collaborated with Helfand Architecture to renovate three existing science buildings and create an 80,000 SF addition that unites the sciences and the science library. The new, LEED® certified addition connects strongly with the outdoors and provides spaces for informal interactions that carry learning outside the classroom and laboratory. Its sustainable design elements, including an innovative stormwater collection system and outdoor classroom, contribute to a structure that serves as a teaching tool promoting awareness of human impact on the natural world and environmental responsibility.

Achievements:
/ 2005 Design Excellence Honor Award, Boston Society of Architects
/ 2005 Design Award/Merit Award, AIA New York State
/ 2005 Educational Facility Design Award/Merit Award, Boston Society of Architects/SCUP
/ 2005 Sustainable Design Award – Citation, Boston Society of Architects/ AIA New York
/ 2005 Tucker Architectural Award, Building Stone Institute

Project Details:
/ 80,000 square feet new construction
/ 69,000 square feet renovation
Wheaton College Norton, MA
Mars Center for Science & Technology
Goals: To support its interdisciplinary science curriculum, encourage intellectual dialogue, and more thoroughly integrate the sciences with the liberal arts, Wheaton undertook a highly ambitious building project that communicates the College’s commitment to sustainability.

Strategies: Transparency is a key sustainable design strategy that promotes connectivity and puts science on display to everyone who visits the popular Café Commons or passes through and around the building. The Mars Center houses the departments of biology, chemistry, physics, astronomy, psychology, and math & computer science. The facility features 12 teaching laboratories and 23 research labs, as well as a vivarium, rooftop greenhouse, and telescope. Outdoor teaching spaces extend learning into the natural environment. The building’s sunshade brow and louvers are strategically placed to reduce the power load. The LEED Gold design features extensive green roofs, high-efficiency HVAC, and lighting controls.

Achievements: With its dynamic curves, green roofs, and dramatic outdoor spaces, this highly sustainable building appears to rise from the campus landscape, integrating the built environment with surrounding wetlands.

LEED Gold Certification

Project Details:
/ 73,000 gross square feet new construction
/ 22,000 gross square feet renovation
/ Green roof
/ Vivarium
/ Greenhouse
/ Telescope
The University of Scranton Scranton, PA
Unified Science Center
Goals: To accommodate traditional science teaching and research as well as emerging programs that promote cross-disciplinary exploration, the University required a sustainable facility embodying the principles and trends advanced by Project Kaleidoscope.

Strategies: The LEED Silver design employs high-efficiency glazing to reduce energy use, enhance visibility and views, and put science on display. Through strategic adjacencies and clusters of faculty offices, classrooms, laboratories, and study/lounges, the design fosters effective intellectual collisions across Chemistry, Biology, Biochemistry, Molecular Biology, Physics, Computer Science, Mathematics, and Electrical Engineering. While modern in design, the new structure respects the style and scale of the older areas of the campus and connects the sciences more directly to campus life.

Achievements: A new atrium serves as the heart of the facility, encouraging interaction among the sciences and linking them with the Campus Commons and the DeNaples Center and Green. The design also creates a new science green.

Project Details:
/ 165,000 gross square feet new construction
/ 48,000 gross square feet renovation
Trinity University San Antonio, TX
Center for the Sciences and Innovation
Goals: To advance its unique undergraduate program that combines engineering with the traditional sciences, the University required an integrated complex that would support interdisciplinary teaching and research in Engineering Science, Biology, Chemistry, Psychology, and Computer Sciences.

Strategies: Upon completion of a Master Plan, EYP was charged with programming, planning, and designing an integrated science complex to be built in three phases. Strategic adjacencies and open sight lines put science on display throughout interconnected neighborhoods of classrooms, laboratories, offices, and living spaces, creating an environment that shares the excitement of science and technology with non-majors and encourages student-faculty interaction. The sustainable design uses a limestone wall to reference the history and geology of the site, as well as the architectural heritage of San Antonio.

Achievements: The design responds to the existing campus aesthetic, incorporating the existing landscape vocabulary and palette of materials, and using building form and landscape to allow easy collaboration between the complex and existing buildings. The building’s spine creates a thoroughfare that links the sciences to the center of campus.

Project Details:
/ 80,000 gross square feet renovation
/ 150,000 gross square feet new construction
Goals: Washington & Jefferson is one of the nation’s oldest liberal arts colleges and internationally recognized for its science programs. The college sought to unite its Chemistry and Physics programs within a classically inspired building whose teaching and research spaces could support discovery-based learning and collaborative research.

Strategies: EYP’s design reflects the latest advances in pedagogy to create flexible and inviting spaces that encourage learning within and outside the classroom. While the interior classrooms and laboratories are decidedly twenty-first century, the building’s aesthetic embraces the Classical orders, referencing the college’s rich tradition.

Achievements: This facility ensures facilities appropriate to the excellence of the college’s programs as well as to increasing enrollment in science courses.

/ LEED Gold Certification

Project Details:
/ 61,000 gross square feet new construction
Goals: Committed to both sustainability and historic preservation, UNH entrusted EYP with creating state-of-the-art teaching and research facilities within an existing structure.

Strategies: EYP provided programming, conceptual design, and design services to create a sustainable, integrated science teaching and research center for the departments of Earth Sciences and Natural Resources. Energy-saving innovations include a graywater system, daylight harvesting, and a heat wheel recovery system. Visitors can monitor energy use live via a kiosk. It is the first academic building in the UNH system to obtain LEED certification.

Achievements: The new facility reflects the University’s commitment to resource conservation, sustainability, and science-based ecosystem management. It provides a strong foundation from which to advance teaching, research and outreach programs.

/ LEED Gold Certification

Project Details:
/ 60,000 gross square feet renovation
/ 14,000 gross square feet new construction
/ Class 10,000 clean room
/ Mass spectrometer laboratory
/ 150-seat lecture hall

“We’re all thrilled with this renovation, which provides significant advancement in our abilities to train tomorrow’s scientists and managers, and we look forward to enhanced cross-college synergies between the NREN and Earth sciences departments.”

Associate Dean of the College of Life Sciences and Agriculture
University of New Hampshire
Goals: As a public liberal arts college, MCLA plays an important role in educating tomorrow’s workforce in biotechnology, nanotechnology, engineering, and health care, fields of vital economic importance to the state. The College requires a unified interdisciplinary facility that will promote research-intensive, discovery-based learning and serve as a community resource.

Strategies: The three-story building will house nine flexible laboratories and research space for Biology, Environmental Science, Chemistry, Physics, Psychology, the Berkshire Environmental Resource Center (BERC), and a start-up lab. A rooftop outdoor classroom and greenhouse will extend the learning environment, displaying and promoting sustainability. Classrooms are designed to support collaborative, hands-on learning.

Achievements: This project represents an extraordinary investment in public higher education and the economic development of Berkshire County. The project has a goal of LEED Silver Certification.

Project Details:
/ 65,000 gross square feet new construction

Massachusetts College of Liberal Arts North Adams, MA
Center for Science and Innovation

Site plan
Goals: The new science facility is part of the newly developed campus master plan set to enhance campus life and improve pedestrian and vehicular circulation. The Science Center will support programs in the Life Sciences, Chemistry, Biochemistry and Molecular Biology, and Computational Science. Its highly visible site requires that it help establish a new gateway for the campus and set the stage for buildings.

Strategies: The design responds to the unique ecosystem of the southern New Jersey Pine Barrens. Cast stone cladding and wood soffits respond to the new Campus Center. Strategic adjacencies of classrooms, laboratories, faculty offices and support spaces with informal study/social lounges will create a dynamic interdisciplinary science community. The design allows for a second phase addition – including programs in Mathematics, Environmental Studies and Geology – that will unify all sciences into one holistic, integrated, and unified science community.

Achievements: The Unified Science Center will define a new campus quadrangle and visually suggest the College’s commitment to environmental responsibility. The design sets the standard for future buildings to follow, ensuring a holistic aesthetic and functionality for the growing campus.

Project Details:

/ 66,000 gross square feet new construction

“This building is our future”

Dr. Michael Frank, President of the Faculty Senate
Goals: The proposed project for the Bush Center for Science in Society will update existing space and provide additional facilities to house the departments of Biology, Chemistry, Mathematics & Computer Science, and Psychology. The project will create space for interdisciplinary clusters and flexible spaces to be shared among previously isolated disciplines.

Strategies: As conceived, the redesigned building is intended to foster serendipitous intellectual interaction across disciplines, conceptually reinforcing the centrality of the sciences to a liberal arts education. The three-story atrium is envisioned as a campus destination where students, faculty, and visitors can come together informally to share ideas, debate theories, and develop new avenues for inquiry and investigation.

Achievements: The proposed design will support discovery-based, collaborative learning and provide space for a three-story atrium, classrooms, seminars, teaching and research laboratories, and faculty offices. The project will be accomplished through the demolition of the Johnson Center, with new construction added to the south of the original building.

Project Details:
- 80,000 gross square feet renovation
- 11,000 gross square feet demolition
- 18,000 gross square feet new construction
Concordia College Moorhead, MN
Science Building Programming and Conceptual Design

Goals: To advance its leadership position in undergraduate liberal arts education, Concordia College requires an integrated facility that supports collaborative, discovery-based learning in mathematics and the sciences. The recently completed Master Plan preferences building conservation and reuse in keeping with the college’s commitment to sustainability.

Strategies: EYP’s design replaces the western edge of Ivers Science Building with new construction angled to create a dramatic focus for a Science Commons at the intersection of Ivers and Jones Science Building. A three-story atrium links the building, promoting wayfinding and connectivity among neighborhoods of classrooms and laboratories. Informal study and social spaces foster connectivity and encourage asynchronous learning outside the classroom.

Achievements: The design will promote community and collaboration by unifying the departments of Biology, Chemistry, Physics, Psychology, and Math & Computer Science around a Science Commons.

Project Details:
/ 58,000 gross square feet new construction
/ 108,000 gross square feet renovation
New York University New York, NY
Brown Building
Goals: To meet its strategic goals for recruitment and research in select areas of sponsored science, New York University needed to replace outdated laboratories in a 100-year-old landmark building with technologically sophisticated facilities that supported collaborative, interdisciplinary work.

Strategies: We transformed eight floors of the Brown Building into state-of-the-art “loft labs” by creating an open, modular laboratory design that maximizes space, affords visual transparency and views, and creates synergies among NYU faculty, students, staff and visiting researchers. Work was phased over seven years to minimize disruption and manage costs. A new MEP engineering infrastructure was threaded through the historic shell to support safety as well as functionality.

Achievements: Brown now houses technologically advanced Organic Chemistry Teaching Laboratories; a shared core nuclear magnetic resonance (NMR) instrumentation laboratory; the nationally renowned Center for Developmental Genetics and the Center for Comparative Functional Genomics (both wet biology research groups); and the Molecular Design Institute, a wet synthetic chemistry research group.

Project Details:

- 64,000 gross square feet renovation
- Core laboratory
- Dry laboratory
- NMR suite
- Vivarium
- Wet laboratory
Virginia Tech Blacksburg, VA
Davidson Hall

Goals: Virginia Tech seeks to create flexible laboratory spaces capable of supporting interdisciplinary research within one of the campus’s signature historic buildings.

Strategies: We are addressing the limitations of this 1920s Collegiate Gothic structure by creating expansive loft-style laboratories with dedicated as well as shared instrumentation in accessible clusters. Earlier additions to the original structure will be demolished to make room for a new, multi-story chemistry building. Because there is already dedicated space for undergraduate science instruction on campus, our programming focuses on creating adaptable spaces to support multiple research teams and encourage spontaneous intellectual discussion. Open sightlines and ample daylighting enhance transparency for occupant comfort and safety.

Achievements: This project is intended to transform the way research teams interact at Virginia Tech.

Project Details:
/ 20,600 square feet existing with limited renovations
/ 46,600 square feet new construction
science clients

Assumption College
Boston College
Cabrini College
Colgate University
College of William & Mary
Connecticut College
Eastern Michigan University
Fordham University
Hamilton College
Massachusetts College of Liberal Arts
Middle Tennessee State University
Moravian College
Mount Saint Mary College
Northern Virginia Community College
Pace University
Rochester Institute of Technology
Rollins College
Swarthmore College
Tidewater Community College
Trinity University
University at Albany
University of New Hampshire
University of Scranton
Washington & Jefferson College
Williams College

Boston College
Boston University
Chatham University
College of the Holy Cross
Concordia College
Dominican College
Emory University, Oxford College
Franklin & Marshall College
Johns Hopkins University
Massachusetts Institute of Technology
Montgomery College
Mount Holyoke College
New York University
Ohio State University, The
Richard Stockton College of N.J., The
Rockefeller University
Spring Hill College
The College of William and Mary
Towson University
Union College
University of Maryland Baltimore County
University of Richmond
Virginia Polytechnic Institute
Wheaton College
Worcester Polytechnic Institute
/contact

John Baxter, AIA, LEED AP
Higher Education Sector Leader
202 471 5005
jbaxter@eypae.com

eypae.com